A group-analysis of 30 exoplanets orbiting distant stars suggests that size, not mass, is a key factor in whether a planet's atmosphere can be detected. The largest population-study of exoplanets to date successfully detected atmospheres around 16 'hot Jupiters', and found that water vapour was present in every case.
Artist’s impression of exoplanetary system [Credit: Alexaldo] |
"More than 3,000 exoplanets have been discovered but, so far, we've studied their atmospheres largely on an individual, case-by-case basis. Here, we've developed tools to assess the significance of atmospheric detections in catalogues of exoplanets," said Angelos Tsiaras, the lead author of the study. "This kind of consistent study is essential for understanding the global population and potential classifications of these foreign worlds."
Artist’s impression of exoplanetary system [Credit: Alexaldo] |
Results suggest that while atmospheres are most likely to be detected around planets with a large radius, the planet's mass does not appear to be an important factor. This indicates that a planet's gravitational pull only has a minor effect on its atmospheric evolution.
Artist’s impression of exoplanetary system [Credit: Alexaldo] |
"To understand planets and planet formation we need to look at many planets: at UCL we are implementing statistical tools and models to handle the analysis and interpretation of large sample of planetary atmospheres. 30 planets is just the start," said Ingo Waldmann, a co-author of the study.
Artist’s impression of exoplanetary system [Credit: Alexaldo] |
A paper summarising the results has been submitted to the Astrophysical Journal.
Source: Europlanet Media Centre [September 19, 2017]
0 comments:
Post a Comment