Insects and plants have an important ancient defence mechanism that helps them to fight viruses. This is encoded in their DNA. Scientists have long assumed that vertebrates – including humans – also had this same mechanism. But researchers at KU Leuven have found that vertebrates lost this particular asset in the course of their evolution.
Credit: KU Leuven |
It seems only logical to assume, then, that humans can be protected against specific diseases in a similar way. However, past experiments to this effect have proven to be a challenge. Researchers from the Animal Physiology and Neurobiology unit at KU Leuven have now shown why this is the case.
KU Leuven researcher Niels Wynant studied Argonaute proteins, which play an important role in the RNAi process. “In a first stage, we compared the DNA of more than 40 living organisms from various important animal groups. It’s the first time that such a diverse group was studied. It didn’t take us long to find the Argonaute proteins in these organisms. We also discovered the existence of three distinct types of Argonautes, each with a specific biological role,” Wynant explains.
Credit: KU Leuven |
The researchers also went back in time by examining the DNA of sponges and cnidarians, two ancient animal species. They found AGO2 proteins in the genome of these animals. Given that vertebrates and humans descend from these organisms, their common ancestor must have had the AGO2 type as well. "We suspect that the AGO2 proteins lost importance when vertebrates started developing a secondary immune system in which antibodies, interferons, and T-cells – rather than Argonaute proteins – fight viruses.”
In a second stage, the researchers examined the speed at which the Argonaute proteins evolved over time. “Argonautes that fight viruses have to be able to evolve very quickly because viruses are constantly adapting as well.” says Niels Wynant. "In invertebrates, we noticed that AGO2 proteins indeed evolved much faster than their AGO1 counterparts. We didn’t see this rapidly evolving group in the vertebrates.”
These findings, published in Scientific Reports, explain for the first time why RNAi is more efficient for fighting diseases in insects than in humans.
Author: Tine Danschutter | Source: KU Leuven [September 15, 2017]
0 comments:
Post a Comment